2.1 The Tangent and Velocity Problem

In this section we see how limits arise when we attempt to find the tangent to a curve or a velocity of an object.

Notice: A tangent to a curve is a line that touches the curve. This tangent line can be different for different points on the curve. Also notice that a tangent line should have the same direction as the curve at the point of contact.

In the following example we will find the tangent line and find the distinction between a tangent line and a secant line.

The Tangent Line Problem

Example: Find the equation of the tangent line to the parabola $y=x^{2}$ at the point $(3,9)$. Also make a table that approximates $x=3$ from the left and right side.

Find the slope of $y=x^{2}$ at $(3,9)$. Use the slope formula, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. Well \ldots we only have one point an we need two points for the slope formula. To fix this, we compute an approximate slope (m) by choosing a nearby point to point $(3,9)$ that is also on the parabola $y=x^{2}$. Let point A be $(3,9)$ and point B be $(3.5$, 12.25). Now find the slope of $A B$.

$$
m_{A B}=\frac{12.25-9}{3.5-3}=\frac{3.5}{.5}=6.5
$$

Now, let's pick a point closer to 3 than 3.5. Let's use point B as $(3.25,10.5625)$. Now find the slope of $A B$.

$$
m_{A B}=\frac{10.5625-9}{3.25-3}=\frac{1.5625}{.25}=6.25
$$

If we continue this process several times, approaching $x=3$ from the right, we get the following table

x	$m_{A B}$
3.5	6.5
3.25	6.25
3.1	6.1
3.01	6.01
3.001	6.001

If we use this process several times, approaching $x=3$ from the left. We get the following table

x	$m_{A B}$
2.5	5.5
2.75	5.75
2.9	5.9
2.99	5.99
2.999	5.999

From the tables above it appears that the closer we get to $x=3$, the slope $m_{A B}$ gets closer to 6 . This means that the slope of the line tangent to $y=x^{2}$ at $x=3$ is 6 . We can also say that the slope of the tangent line is the limit of the slopes of the secant lines, which can be expressed in the following notation:

$$
\lim _{A \rightarrow B} m_{A B}=m \text { and } \lim _{x \rightarrow 3} \frac{x^{2}-3}{x-3}=6
$$

Since the tables above suggest that the slope of the tangent line is equal to 6 , we can use the point-slope form of the equation of a line $\boldsymbol{y}-\boldsymbol{y}_{\mathbf{1}}=\boldsymbol{m}\left(\boldsymbol{x}-\boldsymbol{x}_{\mathbf{1}}\right)$ to write the equation of the tangent line passing through $(3,9)$ as $y-9=6(x-3)$

$$
\begin{gathered}
y-9=6 x-18 \\
y=6 x-9
\end{gathered}
$$

This line, $y=6 x-9$, is the line tangent to the curve $y=x^{2}$ at the point $(3,9)$. Below is the graph of the tangent line, the curve and the point of tangency.

Notice: If you plot all of the secant lines as x approaches 3 , they should get closer and closer to the tangent line $y=6 x-9$.

The Velocity Problem

In this part of the section we discuss how to define "instantaneous" velocity. We will attempt to describe instantaneous velocity by starting with "average" velocity.

$$
\text { average velocity }=\frac{\text { change in position }}{\text { time elapsed }}
$$

Notice: The average velocity has two different times so we have to think of the average velocity as the change in velocity between two different points in time.

Example: If the position of a ball (that has been projected) is given by $\boldsymbol{y}=\mathbf{4 0 t} \mathbf{- 1 6 t} \boldsymbol{t}^{\mathbf{2}}$ (where $t=$ time in seconds and postion is in feet), what is the average velocity of the ball between the times $t=3$ seconds and $t=4$ seconds? Let the units be feet per second ($\mathrm{ft} / \mathrm{sec}$)

The change in position $=y(4)-y(3)$

$$
\begin{aligned}
& =\left[40(4)-16(4)^{2}\right]-\left[40(3)-16(3)^{2}\right] \\
& =[160-256]-[120-144] \\
& =-96-(-24) \\
& =-72 \text { (the ball is falling) }
\end{aligned}
$$

The time elapsed $=4-3$ seconds

$$
=1 \text { second }
$$

Average Velocity $=\frac{-72 \text { feet }}{1 \text { second }}=-72 \mathrm{ft} / \mathrm{sec}$
Notice that the example above shows the average velocity between $t=3$ and $t=4$ seconds of the ball is $-72 \mathrm{ft} / \mathrm{sec}$. BUT what if we wanted to know the exact velocity, "instantaneous velocity" at time $\mathrm{t}=3$?

We can choose smaller time intervals and approach $t=3$. For instance, instead of finding the average velocity between $t=3$ and $t=4$, we could find the average velocity between $t=3$ and $t=3.001$ or between $t=3$ and $t=3.0001$ - just like we did in finding the slope of the tangent line in the last example.

In other words, the instantaneous velocity when $t=3$ is defined to be the limiting value of these average velocities over smaller and smaller periods of time that start at $t=3$. The following table show a clearer idea of that is happening.

Time Interval	Average velocity (ft/sec)
$3 \leq t \leq 3.5$	-64
$3 \leq t \leq 3.1$	-57.6
$3 \leq t \leq 3.01$	-56.16
$3 \leq t \leq 3.001$	-56.016
$3 \leq t \leq 3.0001$	-56.0016

The table above suggests that the instantaneous velocity at time $t=3$ is $-56 \mathrm{ft} / \mathbf{s e c}$.

